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The interactions between electrical tractions a t  the interface of a liquid jet and 
instability phenomena are studied with emphasis on effects due to interfacial 
charge relaxation. Charge relaxation causes the oscillatory growth of a perturba- 
tion. When viscous effects are small, small fields tend to decrease the growth 
rate of the axisymmetric mode, up to a point, and precipitate instability of the 
non-axisymmetric modes. Still larger field strengths increase the growth rates 
of asymmetric as well as axisymmetric modes. Instabilities characterized by high- 
frequency oscillations appear to persist even though the charge relaxation 
phenomena may be quite rapid. When, on the other hand, viscous effects pre- 
dominate the only unstable disturbance form is the axisymmetric one, although 
the manner of growth may be oscillatory. 

1. Introduction 
I n  electrohydrodynamic phenomena of the sort exemplified by the motion of 

drops and bubbles in electric fields, the coalescense or disruption of droplets, and 
the stabilization or disruption of liquid jets, physical and chemical processes at 
the interface are of paramount importance. These processes are relatively poorly 
understood and simple models are part of the more comprehensive understanding 
which is evolving. Simple models involving ohmic conduction and all but ignor- 
ing the special nature of interfaces have, moreover, proved useful in exploring a 
number of phenomena, many of which are discussed in the review by Melcher & 
Taylor (1969). The subject of this paper is the role of interfacial charge relaxation 
in the stability of a liquid jet. 

Recently Taylor (1969) reported striking behaviour of a liquid jet subjected to 
a longitudinal electric field. At moderate field strengths the classical Plateau- 
Rayleigh (varicose) instability is suppressed while at higher field strengths rapid 
asymmetric motions are produced. High-frequency amplification of axisym- 
metric and asymmetric disturbances has also been reported by Huebner (1969), 
who worked with electrically charged jets of water. It has been found that 
electrical shearing stresses, induced by a deformation of the cylinder, act so as to 
stabilize the varicose deformations if electrical charges relax instantaneously 
(Saville 1970). The theory, although consistent with many of the observations, 
is limited to axisymmetric motions. Furthermore, simply extending it to three 
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dimensions would not lead to  a prediction of an oscillatory instability; the dis- 
turbance would still be expected to grow or decay exponentially or oscillate 
without growth. However, oscillatory character might be brought on by electrical 
effects on a time scale different from those for fluid motion, yet coupled to the 
motion through the electrical stresses, e.g. the relaxation of electrical charges at 
an interface. Interfacial charge relaxation, for example, causes overstability at  
the interface between plane layers of fluid subjected to a tangential field (Melcher 
& Schwarz 1968). 

The relaxation of free charges at an interface is only one of several operative 
mechanisms in the instability phenomena. In  Taylor's experiments, for example, 
accelerative forces due to gravity and the longitudinal electrical field caused a 
diminution in cross-section along the jet and the charge induced thereby played 
a significant role. The complicating phenomena are numerous and it has not been 
possible to construct an all-inclusive theory. Here, particular attention is given to 
the effects of one process- charge relaxation. 

2. Descriptions of the fluid motions and the electric fields 
2.1. Pluid motions 

The system under study is a cylindrical liquid jet moving axially at a speed wo 
in an electric field of strength E,, also aligned with the jet; gravitational accelera- 
tion is ignored. The liquid is taken as isothermal incompressible and Newtonian 
and its electrical properties are those of an ohmic conductor with a uniform con- 
ductivity and dielectric constant. The electric field influences the motion of the 
jet only through electrical tractions exerted a t  the interface between the liquid 
and the surrounding dielectric cavity. 

The location of the interface is represented as 

5 = a[l +a@, z', q1,  (1) 
with the deformation, 5, expressed as a Fourier series with time-dependent 
coefficients. However, since the magnitude of c(@, z', 0) is small and the inquiry 
centres on the initial stages of growth or decay it suffices to consider a single 
'mode', 

The axial wave-number, k, is 2n/A ( A  is the wavelength) and a represents the 
radius of the undeformed cylinder. Furthermore, the structure of the linearized 
equations and boundary conditions implies that LJt') will be exponential, viz. 
co exp (w'f'). The stability parameter, w', generally depends on k and m and, since 
the initial growth or decay rate is proportional to the real part of w', a negative 
real part implies stability and vice versa. 

The linearized equation of motion is 

c(0, z', t ' )  = Re {<(t') exp [;(me+ kx')]}. (2) 

Upon transforming the variables according to the scheme 



Electrohydrodynamic stability 817 

with 7, = (pa3/T)4 the equation of motion becomes 

a 
zv=-  

1 
vp + jj v2v. 

Throughout the development the interfacial tension is denoted as T, the density 
as p, the kinematic viscosity as v, and R stands for (aT/pv2)4. Next, to facilitate 
finding functions which satisfy (5) and the incompressibility condition, we write 

v = { 4 r ,  8, z) ,  v ( r ,  d , x ) ,  W ( T ,  0,z))exp (W, 
and P = p(r, 69.4 exp ( W T ) ,  (6) 

w v l  = wv + vp. (7) 

with w = w’r, + iw,r,/a and then define v1 according to the formula 

Now the equation for v1 can be uncoupled from that for p and when the depen- 
dence on 0 and z is the same as (2) the scalar equations are readily solved yielding : 

where P2 = a2 + w R  and a! = ka. The constants A ,  B and C are to be determined 
from kinematic and dynamic conditions at  the interface. Here the exponential 
exp [;(me + ax)] has been consistently omitted. The hydrodynamic stresses will be 
calculated from these expressions and used to define an equation for w from which 
the stability of the system will be inferred but before this characteristic equation 
can be set up it will be necessary to determine the electrical stresses at  the inter- 
face. 

2.2. Electric fields and forces 

A number of simplifications of Maxwell’s equations are appropriate to  the de- 
scription of electrohydrodynamic phenomena. The fluids under considerations 
are poor conductors compared with fluids such as mercury or other liquid metals 
and so induced magnetic effects are small. Thus Maxwell’s equations in differen- 
tial form simplify to (Sommerfeld 1964): 

I V’ x E = 0, 

and 

V’ . D = 4nq, 

aplat’ + V’ . J = 0. 

(9) 

Here the electric field strength is denoted by E, the dielectric displacement is D, 
the bulk free charge density is q, and the electric current density is J. 

5 2  F L M  48 
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The constitutive relations selected to  represent the electrical phenomena are 

The electrical properties of the liquid are the dielectric constant, K, and the elec- 
trical conductivity, u. A characteristic relaxation time for bulk free charges is 
K / u ,  i.e. qcc exp ( - ut’/K); so if attention centres on regions far from the sources 
of free electric charge this charge density can be negligibly small. Further infor- 
mation and references to bulk charge relaxation, as well as the constitutive rela- 
tions, can be found in the survey by Melcher & Taylor (1969). The potential 
function for the region inside as well as outside the deformed interface can now 
be found by solving Laplace’s equation and considering an interface deformed 
according to  (2) leads to the potential function 

D = KE, and J = aE+qv’. (10) 

A 

@(r’ ,  8, x ‘ ,  t ‘) = - EOz’ + affi-,(kr‘) exp [i(mO +kz’) + w’t’] 

in the interior and 1 (11 )  

@(r ’ ,O,z ’ , t ’ )  = -E,z‘+uAK,,(kr‘)exp[i(mO+kz‘)+ d t ’ ]  

in the exterior region. Hereafter carets will be used to distinguish things pertinent 
to the interior region. The electric field strengths at the interface are composed of 
the basic field, (0, 0, E,), plus perturbations k, and El and these perturbations 
are ] (12) 

el = { - iaco E, - f fa Ik(a) ,  - imffI,(a), - iaffI,(a)} 
and El = { - iac0 Eo - AaKk(a),  - imAK,(a), - iaAK,(a)}, 

omitting the exponential factor exp [i(mO + kz’) + u’t’] in each instance. The 
components of el and El are in the directions of a normal to the interface and tho 
tangent directions with senses of increasing 8 and z’, respectively, and these ex- 
pressions contain the constants A and ff which must be determined from the 
electrical boundary conditions. 

The boundary conditions arising from physical arguments are (see Sommer- 
feld 1964, or Melcher & Taylor 1969): (i) continuity of the tangential components 
of E, (ii) conservation of electric charge, 

The jump in uEn across the interface is (UE,), i.e. aE, - Sg,, the surface charge 
Q is (KE,) while V, . denotes the surface divergence. The first boundary condition 

Since the interfacial charge density is zero in the undisturbed state the surface 
divergence term of (13) reduces to w,aQ/az‘ after linearization, and, in the con- 
vected co-ordinate system specified by (a), (13) becomes 

aQ/at’ + (a%,) + V,. (Qv’) = 0. 

implies AI,(a) = AK,(a).  (14) 

(13) 

aQ/& + T , ( ~ E , )  = 0. 

A^ = - i[Eo K,(a)A(a, 0) ,  

(15) 

(16) 

From this equation it follows that 

where 
(1  - K / $ )  w + tho/& 

A ( ~ , o )  = 
[ I T & )  Km(4 - (K /@ J m ( 4  K&)I w + (STOlf2)  U a )  

* 

The parameter 8 ~ ~ / 8  specifies the importance of interfacial charge relaxation 
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and if it is quite large then the interface behaves similar to that between a perfect 
conductor and a dielectric, i.e. t?Bn = 0. Conversely, the behaviour of the inter- 
face approximates that between two perfect dielectrics, i.e. (KE,)  = 0, if 
~ T , / B  is small. 

Proceeding to calculate the electric stress tensor (Landau & Lifshitz 1960) one 
finds the dimensionless components a t  the interface to be 

+:A = - (aI?Et/8nT) (1  - 2 4 I m ( a )  Km(a) A(a, w ) } ,  

(17) 
+?; = - (a;I?Ei/4nT) iac[l -IA(a) K,(a) A(a, w ) ] ,  

T Z i  = (K/I?) +:A, 
r?; = - (aKEt/4nT) ia"1 -Im(a) Kk(a)  A(a, w ) ] .  

Here the scale for stress is T / a  and 6 represents the exponential 

co exp [i(m8 + ax) + w r ] .  

The tangential component whose sense is in the direction of increasing 8 is O(ci) 
and is therefore neglected. 

2.3. Boundary conditions 

The kinematic and dynamic conditions which must be enforced at the interface 
between the jet and the dielectric cavity are: 

(i) the kinematic condition, dc/dT = u ;  (18) 

(19) -p+--++gA = -po -  1 + (1 -mZ-az) c++gA; 
(ii) continuity of the normal stress, 

2 au 
R ar 

(iii) continuity of the axially directed shearing stress, 

(iv) continuity of the azimuthally directed shearing stress, 

These four conditions allow c(8, z,  T) to be specified in terms of A ,  B and C and 
lead to the condition which must obtain so as to preclude the trivial solution. Thus 
w must be a root of 

("I det D, = 0. (22)  
Rk,(a, O) det D, + 

a% detD,+ 2w 
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(ii) D, is the same as D, except for the second row which is 

(iii) D3 is the same as D, except for the third row which is 

- (m) mt 1L(~)lA(..,  @)I, (28) 
with A(a,  o) given in (16). 

I n  (22) effects due to electrical shearing stresses, which are associated with 
det D,, and electrical normal stresses, associated with detD,, are clearly dis- 
tinguished.? Electrical normal stresses have a stabilizing effect in instances 
where the relaxation parameter I?/&-,, is either very small or very large since then 
kl(a,  W )  is negative and so increases in the field strength decrease Q(a, w ) .  The 
effect is somewhat more complicated, however, in intermediate situations due to 
coupling of the normal stresses and charge relaxation and effects due to electrical 
shearing stresses are even more obscure. 

3. Stability of the jet when viscous effects are small 
Although it is difficult to draw detailed interferences directly from (22)  the 

situation simplifies considerably when R is either very small or very large, e.g. 
thc value of R would be about 600 for a 1 em diameter water jet in air. The latter 
situation does not correspond to the complete neglect of viscous effects, for they 
are simply confined to a thin region near the interface. In this electrohydro- 
dynamic boundary layer viscous effects balance the electrical shear stresses. The 
necessary formulas are developed as follows. First 

p2 = wR(  1 + a2/wR), (29 )  

so w will be O(1) if p is O(R4). Effects on the slower time scale, viz. where w is 
O(I2-l) and /3 is O( l), will not be considered. Thus 

a2 p N (@A)& 1+-+ ... [ 2wR 

Using the first two terms of the asymptotic expansion for I,(a) given by Watson 
( I  966) leads to 

t For axisymmetric disturbances (m = 0) in the absence of electrical effects, (22) reduces 
to the result cited in Chandrasekhar (1961).  



Electrohydrodynamic stability 

or, written out in full, 

82 1 

Here 

rr03 +fi(a) w2 - r,, fo(a) (1 - m2 - a2) - E 

(32) 

(33) 

0 0.2 0.4 0.6 0.8 1 .O 

U 

FIGURE 1. The growth rate paramAeter, w, for the axisymmetric mode as a function of u for 
instantaneous charge relaxation ; KjK = 78 and R + 00. Numbers associated with each curve 
denote the value of E .  The dashed curve shows the w?z relation for E = 5 x with a per- 
fectly insulating fluid. 

Two conclusions drawn directly from (32) are: (a)  rr-+ 00. Here the character- 
istic equation reduces to the form appropriate for perfect dielectrics and no 
electrical shearing stresses are present. Non-axisymmetric deformations (m + 0) 
are always stable; axisymmetric deformations with wave-numbers within the 
range 0-a,; a, < 1 are unstable. As E is increased the critical wave-number 
decreases, although instability persists at  small wave-numbers. The formula 
for the axisymmetric case was first reported by Nayyar & Murty (1960). ( b )  
rr = 0. This form is appropriate for good conductors and deformations of the 
type wz + 0 are again stable. Axisymmetric deformations may grow, depending 
on the magnitudes of E and a, but moderate sized values of E are sufficient to 
stabilize the jet. For example, within &/K = 78 stability is indicated when E 
exceeds 5 x 10-3(see figure 1); fluids with small dielectric constants require cor- 
respondingly larger fields for stabilization. The stabilizing effects due to electrical 
shear stresses were identified in an earlier study which centred on axisymmetric 
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FIGURE 2. The real part of the growth rate parameter, Re ( w ) ,  for R --f co as a function of 01. 

and the relaxation time 7,; (a) E = 0.006; ( b )  E = 0.02. Numbers in parentheses associated 
with each curve denote the mode and T,, respectively. Dashed lines indicate the growth is 
oscillatory with selected values of Im ( w )  indicated. 
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motions and the effects of the surrounding fluid but excluded charge relaxation 
effects (Saville 1970). 

Next we look for evidence of instability when interfacial charge relaxation is 
present, i.e. 0 < r, < co, since it is here that electrical stresses could interact with 
the other stresses to produce oscillatory forms of instability. Equation (32) is 
cubic in w so it is a straightforward matter to find the roots, given values for the 
other variables and parameters; some of the results of numerical calculations are 
presented as table 1 and on figures 2 (a)  and (b).  First of all the anticipated elec- 
trical interaction should be easy to identify, if it exists a t  all, in situations where 
the parameter r, has a value near unity. For example, the appropriate time 
scales for a 1 mm diameter distilled water jet are 813 = 7 x see and 70 = 
sec so that r, = 0.7. Figures 2(a) and (b)  show results calculated with the field 
strength parameter, E, equal to 5 x 10-3 and 2 x respectively. I n  both 
instances the jet would be stable if interfacial charge distributions could relax 
instantaneously. Conversely, the axisymmetric mode would be unstable if the 
relaxation processes were exceptionally slow. It was found that the instability 
could be oscillatory, i.e. the real part of w is positive, and unexpectedly, both the 
asymmetric and axisymmetric types of deformations are unstable. Qualitatively 
similar behaviour was found for l?/K less than 78. 

The data summarized in table 1 reveal another effect of the longitudinal elec- 
tric field: the growth rate of the most unstable wavelength of the axisymmetric 
mode is first decreased then increased as the field strength is raised but the rate 
of growth of the sinuous mode increases uniformly with increasing field strength. 

All these effects are due to electrical relaxation processes; the reasons for their 
appearance are established by examining equation (32). Recall, first, that when 
7, = 00 there will always be a range of wave-numbers where instability is possible. 
Upon writing w = wo + 6, where wo is a root of (32) corresponding to 7, = co 
while 6 represents a small connexion due to a finite electrical relaxation time, we 
find 

The term in brackets is always positive. Suppose, now, that wi  is positive, e.g. 
the disturbance is axisymmetric and unstable with a wave-number in the range 
O-a, .  Equation (34) shows that the addition of relaxation processes tends to 
reduce the rates of growth of these disturbances and the size of the reduction 
increases with the field strength. At the same time, however, all the stable oscilla- 
tions (wg < 0) ,  are made unstable and their growth rates increase with the field 
strength. 

The results presented here are in qualitative agreement with Taylor's 
experiments (Taylor 1969) but comparisons are tenuous since, in most of the 
experiments, the acceleration of the jet in the gravitational field caused the cross- 
section to vary and hence a surface charge was induced by the electric field. In  
one of his experiments a continuous thread of water was established between a 
nozzle and a plate and the potential difference between the plate and the nozzle 
WM decreased. At 4 kV small axisymmetric corrugations were visible; at 3 kV the 
jet broke up into drops. Although the geometrical configuration of the apparatus 
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made an accurate determination of the field strength parameter, E ,  diEcult the 
numerical value was estimated as 0.003 for a potential difference of 4 kV. If the 
liquid were assumed to  be a perfect conductor then, according to  the present 
theory, the jet would become stable when E is about 0.005 while if T, were as 
large as 0.05 then the growth rate of the most unstable mode would be reduced by 
a factor of 28, compared to the zero-field growth rate. This low rate could be 
sufficient to  suppress the appearance of an instability due t o  the lack of suEcient 
time for growth and, according to the theory developed here, a much larger field 
strength would be necessary to  increase the growth rate of either the axisym- 
metric or sinuous instability to a point where it would be comparable in size to, say, 
the growth rate in the absence of a, field. Although Taylor observed a sinuous 
form of instability a t  a potential difference of 17 kV with a free jet the instability 
was absent when the jet was formed round a silk thread which kept the jet cross- 
section more-or-less uniform. 

r 
E 

0 
2.5 x 10-3 
5.0 x 10-3 
7.5 x 10-3 
1.0 x 10-2 
1.5 x 10-2 
2.0 x 10-2 

a 

0.70 
0.53 
1.6 
1.6 
1.6 
1.5 
1-5 

r n = O  m = l  

0.34 
0.20 
0.012 
0.016 
0.020 
0.027 
0.032 

v -- 
Im ( w )  a Re ( w )  
r7 = 0.5 

0 stable 
0 2.1 0.0039 
1.6 2.1 0.0072 
1.7 2.1 0.010 
1.9 2.1 0.013 
1.9 2.1 0.018 
2.1 2.1 0.02 1 

- 
Im( o) 

3.1 
3.2 
3.3 
3.4 
3.7 
3.9 

Tr = 0.01 

5 . 0 ~ 1 0 - 3  27 0.025 140 27 0.025 140 
2 . 0 ~  27 0.096 143 27 0.096 145 

h 

TABLE 1. Characteristics of the most unstable disturbances ( K / K  = 78) 

Another interesting aspect of the theory is encountered as the relaxation 
parameter, r,, is made smaller and smaller with the field strength parameter 
fixed but large enough to  ensure stability when 7,. = 0. The maxima in the Re 
( w )  -a relation now occur a t  larger and larger wave-numbers and the magnitudes 
increase somewhat. Thus for E = 5 x 10-3 the wave-number of the most unstable 
axisymmetric disturbance increases from 1.6 to  27.0 as T, decreases from 0.5 to  
0.01 (see table 1). It might have been expected that the real part of the complex 
roots of (32) would be uniformly small, whatever the wave-number, as long as 
T, is small; such is not the case. Some insight into the actual behaviour can be 
obtained by examining (32) again. First of all when a --f 0 or a -+ 00 the roots of 
(32) indicate stability as long as T, is positive. Next, with the wave-number 
fixed, the real root is negative and O(r;l)  while the complex roots are: 

w 5 (fo(a) ( 1 - m2 - a2) - E (K/l?) a2ffi-l(a))z' 
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In  the situations under consideration the first term on the right is imaginary while 
the second term is O(r,), positive, and increases with a. Thus, a shift in the loca- 
tion of the maximum of Re ( w )  is indicated and, although Re ( w )  may be made 
small at  a given wave-number by decreasing T,., there will always be a maximum 
in the Re ( w )  - arelation. Furthermore, the oscillation frequency will be high since 
Im(w) - a8 as a - t m .  

The further effects of viscosity can be estimated by including the term in (31) 
which is O(P-l). I n  the absence of electrical relaxation phenomena the inclusion 
of this O(P-l) term leads to a quintic equation for w6 and if relaxation is included 
then the equation is of the seventh order. Neither of these situations has been 
investigated. However, for 7,. = 0 it is easy to show that if the roots of (32) are 
imaginary, i.e. the motion is stable, then the O(P-l) effects are always stabilizing. 
In  any event when Re (P)  < 0 the next term in (31) is - 2aY,,(a) Ic,(a, w )  p-1 and if 
Re (p) > 0 the sign is reversed. Writing w = w,, + 6, where 6 is a small correction 
due to the electrical shearing stresses, leads to 

Ea2 
6 = T  

w;Rq,(a) K,(a) (36) 

for rr = 0;  the negative sign applies for Re(& < 0. Thus for oscillatory modes 
(w,, = 5 iy, y > 0 )  6 is always negative and so the electrical shear stresses have a 
stabilizing effect. The stabilizing effects of viscosity are likely to be particularly 
important in cases where the relaxation time is short for there the wavelength is 
small and oscillation frequency high. 

The oscillatory nature of the instability phenomena found here is similar to that 
identified by Melcher & Schwarz (1968) in their study of the effects of charge 
relaxation on the stability of a horizontal planar interface in the presence of 
gravity and a parallel electric field (Rayleigh-Taylor problem). Of course there 
are some fundamental differences in the situations themselves, so that consider- 
able care must be exercised in attempts a t  generalization. 

For example, interfacial tension has a stabilizing effect on surface waves in an 
unstable configuration with a plane interface, i.e. surface tension limits the range 
of unstable wave-numbers, but with a cylindrical interface surface tension may 
either act so as to cause instability, with axisymmetric deformations, or stability, 
with non-axisymmetric deformations. 

4. Stability of the jet when viscous effects dominate 

leads to 

F(a)  and G(a)  are, in general, combinations of the determinants of several 3 x 3 
matrices. After writing Q(a, w )  and k,(a, w )  in full we have the analogue to (32) 

If the viscous forces predominate then a straightforward expansion of (22) 

- w’p~a/T N Q(a, a) F(a)  + /%,(a, W )  G(a) ( lwRl -t 0). (37) 

T,.S + ifi(a) + T , . F ( ~ )  [a( 1 - m2 - a,) - E(K/B)  (1 - B/li)2f2(a)l> G 
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wheref,(a) is given by (33), 

(39) i fi(4 = a Z u 4  %Z(aff3(4, 

f 3 ( 4  = [ L ( a )  %(a) - (K/Q La(a) G&41-1 
- and w = w'pva/T, 7,. = I?T/pavt?. 

Numerical studies of (38) uncovered no asymmetric instabilities, so the following 
remarks will centre on axisymmetric modes. For axisymmetric disturbances 
P(a)  and G(a)  are quite simple, viz. 

] (40) 
P(a) = - (24-1 [azI;(a)/I;(a) - a2- 11-1 

and G(a) = -aIda)/Ii(a) [aIo(a)/Ii(g) - aA(a)/-&(a) - 11 B(a)- 
First consider the limiting situation where in interfacial charge relaxation is 

instantaneous: disturbances either grow or decay in an exponential fashion, 
oscillatory motions are absent, and sufficiently strong fields can stabilize the jet. 
Next, when charge relaxation is absent oscillatory motions are again suppressed 
but here the jet cannot be stabilized by increasing the field strength and long 
wavelength disturbances are always unstable. This can be seen by noting that 
P(a)f,(a) is O(a) as a -+ 0. 

0.24 

\ 
\ 
\ 
\ 

l(O.01) 
I 
I 
I 
I 
I 

\ 
\ 

I 
I 
I 
I 
I 
I 
I 
I 

I 

10-3 I I I 1  I I I I l l1  I I I I  I I t .  1 1  I I I I l l  

10-3 10-2 10-1 

c1 

FIGURE 3. The real part of the growth rate parameter for R + 0 as a function of a and the 
relaxation time 7r; E = 0.0025 and K / K  = 78. The results are for the axisymmetric mode 
and the dashed lines indicate an oscillatory growth. Numbers in parentheses denote values 
of Tr and the other numbers are Im ( w ) .  

The characteristics of the cylinder when 0 < ;i, < 00 with viscous effects 
dominant are different from those where inertial effects predominate in that 
only axisymmetric motions can be unstable. However, the addition of charge 
relaxation may still produce an oscillatory form of instability. Some representa- 
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tive results are shown on figure 3, and, it should be noted, similar results were 
found for smaller values of R / K .  In  figure 3 the field strength parameter E is 
below that required for complete stability when charge relaxation is instantane- 
ous. For small relaxation times there are two maxima; at  small wave-numbers 
the instability is oscillatory while at larger wave-numbers the instability occurs 
without oscillation. When E is somewhat larger, e.g. E = 0.005, then only the 
oscillatory form of instability is found when T~ is small. 

5. Summary 
The stability of a fluid jet moving in an electric field aligned with the axis of 

the jet was studied using a theory which takes into account electrical conduction 
in the liquid and the relaxation of electrical charges a t  the interface. Subsequent 
to the derivation of a general dispersion relation two special situations were 
examined in detail: the stability of systems wherein either inertial effects or 
viscous effects are dominant. 

It was found that whenever charge relaxation occurs disturbances may grow 
in an oscillatory manner, in direct contrast to the purely exponential growth 
characteristic of either perfect dielectrics or perfect conductors. If the fluid is a 
conductor, however poor, then viscous stresses must be taken into account at  
the interface so as to balance the electrical shearing stresses. These viscous 
stresses are concentrated within an electrohydrodynamic boundary layer near 
the interface if the viscosity is low and, due to charge relaxation phenomena, the 
interaction between the electrical and viscous stresses a t  the interface causes in- 
stability with both asymmetric and axisymmetric deformations. Furthermore, 
the oscillatory instability persists, no matter how large the field strength, if the 
relaxation processes take place at finite rates. On the other hand, the behaviour 
of a very viscous jet is such that even with charge relaxation only axisymmetric 
deformations are unstable, although the form of the instability may be oscillatory. 
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